School of Mathematical and Statistical Sciences Faculty Publications and Presentations

Document Type

Article

Publication Date

7-7-2023

Abstract

In this work, we consider a class of substitutions on infinite alphabets and show that they exhibit a growth behaviour which is impossible for substitutions on finite alphabets. While for both settings the leading term of the tile counting function is exponential (and guided by the inflation factor), the behaviour of the second-order term is strikingly different. For the finite setting, it is known that the second term is also exponential or exponential times a polynomial. We exhibit a large family of examples where the second term is at least exponential in n divided by half-integer powers of n, where n is the number of substitution steps. In particular, we provide an identity for this discrepancy in terms of linear combinations of Catalan numbers.

Comments

Original published version available at https://doi.org/10.1016/j.indag.2023.06.010

Publication Title

Indagationes Mathematicae

DOI

10.1016/j.indag.2023.06.010

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.