School of Mathematical and Statistical Sciences Faculty Publications and Presentations

Document Type

Article

Publication Date

10-2020

Abstract

The purpose of the research was to investigate two-dimensional modeling of efficiency of mixing, resulting from the reflection of a linear internal wave field (IWF) off a continental slope. Efficiency of deep ocean mixing was associated with the energy balance of the radiating IWF into an interior of the ocean in the vicinity of a sloping bottom topography. Since waves are generated not only at the fundamental frequency but also at all of its harmonics ωn = less than buoyancy frequency N and greater than Coriolis frequency f, our analysis includes, in general, an infinite number of discrete internal wave modes n satisfying the dispersion relationship for internal waves. However, since we are interested only in the radiating part of the field, the mode numbers are limited. Due to multiple singularities of order two caused by resonance in the vicinity of critical slope, the energy is visualized in Lδ -norm with δ > 2. Research results include the visualization of the effects of the continental slope and the Earth’s rotation on resulting energy in the vicinity of the slope.

Comments

Copyright © 2020 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publication Title

Journal of Applied Mathematics and Physics

DOI

10.4236/jamp.2020.810169

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.