School of Mathematical and Statistical Sciences Faculty Publications and Presentations

Document Type


Publication Date



In this paper, we develop a continuum model for the movement of agents on a lattice, taking into account location desirability, local and far-range migration, and localized entry and exit rates. Specifically, our motivation is to qualitatively describe the homeless population in Los Angeles. The model takes the form of a fully nonlinear, nonlocal, non-degenerate parabolic partial differential equation. We derive the model and prove useful properties of smooth solutions, including uniqueness and L2 -stability under certain hypotheses. We also illustrate numerical solutions to the model and find that a simple model can be qualitatively similar in behavior to observed homeless encampments.


© The Author(s)

This is an Open Access article published by World Scientific Publishing Company. It is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 (CC BY-NC-ND) License which permits use, distribution and reproduction, provided that the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Publication Title

Mathematical Models and Methods in Applied Sciences



Included in

Mathematics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.