School of Mathematical & Statistical Sciences Faculty Publications and Presentations

Document Type

Article

Publication Date

4-2024

Abstract

In a 1987 paper, Eliahou and Kervaire constructed a minimal resolution of a class of monomial ideals in a polynomial ring, called stable ideals. As a consequence of their construction they deduced several homological properties of stable ideals. Furthermore they showed that this resolution admits an associative, graded commutative product that satisfies the Leibniz rule. In this paper we show that their construction can be extended to stable ideals in skew polynomial rings. As a consequence we show that the homological properties of stable ideals proved by Eliahou and Kervaire hold also for stable ideals in skew polynomial rings.

Comments

Original published version available at https://doi.org/10.1080/00927872.2023.2269560

Publication Title

Communications in Algebra

DOI

10.1080/00927872.2023.2269560

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.