School of Mathematical & Statistical Sciences Faculty Publications and Presentations

Document Type

Article

Publication Date

6-2023

Abstract

In this paper, we consider a coupled modified Yajima–Oikawa (YO) system which describes the nonlinear resonant interaction between one long wave (LW) and two short waves (SWs). It is shown that this coupled system can be derived from a three-component modified nonlinear Schrödinger equations through asymptotic reductions. Furthermore, the bright, dark multi-soliton and multi-breather solutions in terms of determinants are obtained respectively by virtue of the bilinear Kadomtsev–Petviashvili-hierarchy reduction technique. The detailed analysis of dynamical properties for one- and two-solitons and breathers is performed, which show the interesting collision properties for the bright and dark solitons. Particularly, differing from the modified YO system with the single SW component, two bright solitons can undergo inelastic collisions and two dark solitons can generate the bound state in the coupled modified YO system. Finally, general bright, dark multi-soliton and multi-breather solutions are presented for the multi-component modified YO system with multi short waves.

Comments

Original published version available at https://doi.org/10.1016/j.physd.2023.133695

Publication Title

Physica D: Nonlinear Phenomena

DOI

10.1016/j.physd.2023.133695

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.