
School of Mathematical and Statistical Sciences Faculty Publications and Presentations
Document Type
Article
Publication Date
4-2016
Abstract
The adverse impact of ignoring multicollinearity on findings and data interpretation in regression analysis is very well documented in the statistical literature. The failure to identify and report multicollinearity could result in misleading interpretations of the results. A review of epidemiological literature in PubMed from January 2004 to December 2013, illustrated the need for a greater attention to identifying and minimizing the effect of multicollinearity in analysis of data from epidemiologic studies. We used simulated datasets and real life data from the Cameron County Hispanic Cohort to demonstrate the adverse effects of multicollinearity in the regression analysis and encourage researchers to consider the diagnostic for multicollinearity as one of the steps in regression analysis.
Recommended Citation
Vatcheva KP, Lee M, McCormick JB, Rahbar MH (2016) Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies. Epidemiol 6: 227. doi:10.4172/2161-1165.1000227
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Publication Title
Epidemiology
DOI
10.4172/2161-1165.1000227

- Citations
- Citation Indexes: 332
- Policy Citations: 3
- Usage
- Downloads: 1604
- Abstract Views: 103
- Captures
- Readers: 811
- Mentions
- News Mentions: 1
Comments
© 2016 Vatcheva KP, et al.