Document Type

Article

Publication Date

2001

Abstract

We study the geometry dependence of the Casimir energy for deformed metal plates by a path integral quantization of the electromagnetic field. For the first time, we give a complete analytical result for the deformation induced change in Casimir energy δE in an experimentally testable, nontrivial geometry, consisting of a flat and a corrugated plate. Our results show an interesting crossover for δE as a function of the ratio of the mean plate distance H, to the corrugation length λ: For λ≪H we find a slower decay ∼H−4, compared to the H−5 behavior predicted by the commonly used pairwise summation of van der Waals forces, which is valid only for λ≫H.

Comments

©2001 American Physical Society. Original published version available at https://doi.org/10.1103/PhysRevLett.87.260402

Publication Title

Physical Review Letters

DOI

10.1103/PhysRevLett.87.260402

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.