Document Type

Article

Publication Date

7-30-2021

Abstract

We present a technique to detect optical transients based on an artificial neural networks method. We describe the architecture of two networks capable of comparing images of the same part of the sky taken by different telescopes. One image corresponds to the epoch in which a potential transient could exist; the other is a reference image of an earlier epoch. We use data obtained by the Dr. Cristina V. Torres Memorial Astronomical Observatory and archival reference images from the Sloan Digital Sky Survey. We trained a convolutional neural network and a dense layer network on simulated source samples and then tested the trained networks on samples created from real image data. Autonomous detection methods replace the standard process of detecting transients, which is normally achieved by source extraction of a difference image followed by human inspection of the detected candidates. Replacing the human inspection component with an entirely autonomous method would allow for a rapid and automatic follow-up of interesting targets of opportunity. The toy-model pipeline that we present here is not yet able to replace human inspection, but it might provide useful hints to identify potential candidates. The method will be further expanded and tested on telescopes participating in the Transient Optical Robotic Observatory of the South Collaboration.

Comments

Copyright 2021 The Author(s)

Publication Title

Monthly Notices of the Royal Astronomical Society

DOI

10.1093/mnras/stab2163

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.