Document Type

Article

Publication Date

12-2022

Abstract

The electronic and optical properties of Y2O2S and its Er+3 doped counterparts at various concentrations are analyzed using density functional theory (DFT) and simulated x-ray near edge (XANES) spectra. Our simulations are complemented by absorption experiments, which show Y2O2S:Er+3 light emissions in the visible and near infrared. These emissions correspond to Er f–f intraband transitions. We use DFT and DFT+U to calculate the band structure of the Y2O2S and its Er+3 doped counterparts, whereas optical properties are calculated using the independent particle approximation (IPA). The host Y2O2S optical properties are also calculated using the random phase approximation (RPA) and the many-body GW0 approximation. Our IPA calculations on the Y2O2S:Er+3 reveal transitions in the energy region of the bandgap, which are absent in the host spectrum. These are assigned to Er f–f intraband transitions in the visible and near infrared, by applying a rigid energy shift. Moreover, XANES calculations at the Er M5-edge reveal a pre-edge broad shoulder in the proximity of the Er 4f band, which is also supportive of the f–f intraband transitions.

Comments

© 2022 Elsevier Ltd. All rights reserved.

Original published version available at https://doi.org/10.1016/j.mtcomm.2022.104328

https://par.nsf.gov/biblio/10356734-optical-properties-simulated-ray-near-edge-spectra-y2o2s-er-doped-y2o2s

Publication Title

Materials Today Communications

DOI

10.1016/j.mtcomm.2022.104328

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.