Document Type
Article
Publication Date
3-16-2021
Abstract
Sufficient statistics are combinations of data in terms of which the likelihood function can be rewritten without loss of information. Depending on the data volume reduction, the use of sufficient statistics as a preliminary step in a Bayesian analysis can lead to significant increases in efficiency when sampling from posterior distributions of model parameters. Here we show that the frequency integrand of the cross-correlation statistic and its variance are approximate sufficient statistics for ground-based searches for stochastic gravitational-wave backgrounds. The sufficient statistics are approximate because one works in the weak-signal approximation and uses measured estimates of the autocorrelated power in each detector. We perform analytic and numerical calculations to show that, in this approximation, LIGO-Virgo’s hybrid frequentist-Bayesian parameter estimation analysis is equivalent to a fully Bayesian analysis. This work closes a gap in the LIGO-Virgo literature and suggests directions for additional searches.
Recommended Citation
Matas, Andrew, and Joseph D. Romano. "Frequentist versus Bayesian analyses: Cross-correlation as an approximate sufficient statistic for LIGO-Virgo stochastic background searches." Physical Review D 103.6 (2021): 062003. https://doi.org/10.1103/PhysRevD.103.062003
Publication Title
Physical Review D
DOI
10.1103/PhysRevD.103.062003
Comments
Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Open access publication funded by the Max Planck Society.