Document Type

Article

Publication Date

8-22-2019

Abstract

Highlights

  • Caenorhabditis elegans MORC-1 traps DNA loops

  • Recruitment of additional MORC-1s cause further loop trapping and DNA compaction

  • MORC-1 assemblages become topologically entrapped on DNA

  • MORC-1 forms discrete foci in vivo and can phase transition in vitro

Summary

Microrchidia (MORC) ATPases are critical for gene silencing and chromatin compaction in multiple eukaryotic systems, but the mechanisms by which MORC proteins act are poorly understood. Here, we apply a series of biochemical, single-molecule, and cell-based imaging approaches to better understand the function of the Caenorhabditis elegans MORC-1 protein. We find that MORC-1 binds to DNA in a length-dependent but sequence non-specific manner and compacts DNA by forming DNA loops. MORC-1 molecules diffuse along DNA but become static as they grow into foci that are topologically entrapped on DNA. Consistent with the observed MORC-1 multimeric assemblies, MORC-1 forms nuclear puncta in cells and can also form phase-separated droplets in vitro. We also demonstrate that MORC-1 compacts nucleosome templates. These results suggest that MORCs affect genome structure and gene silencing by forming multimeric assemblages to topologically entrap and progressively loop and compact chromatin.

Comments

Original published version available at

https://doi.org/10.1016/j.molcel.2019.07.032

Publication Title

Molecular cell

DOI

10.1016/j.molcel.2019.07.032

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.