Document Type

Article

Publication Date

1-13-2024

Abstract

With the ongoing growth in radio communications, there is an increased contamination of radio astronomical source data, which hinders the study of celestial radio sources. In many cases, fast mitigation of strong radio frequency interference (RFI) is valuable for studying short lived radio transients so that the astronomers can perform detailed observations of celestial radio sources. The standard method to manually excise contaminated blocks in time and frequency makes the removed data useless for radio astronomy analyses. This motivates the need for better radio frequency interference (RFI) mitigation techniques for array of size M antennas. Although many solutions for mitigating strong RFI improves the quality of the final celestial source signal, many standard approaches require all the eigenvalues of the spatial covariance matrix (R∈CM×M) of the received signal, which has O(M3) computation complexity for removing RFI of size d where d≪M. In this work, we investigate two approaches for RFI mitigation, 1) the computationally efficient Lanczos method based on the Quadratic Mean to Arithmetic Mean (QMAM) approach using information from previously-collected data under similar radio-sky-conditions, and 2) an approach using a celestial source as a reference for RFI mitigation. QMAM uses the Lanczos method for finding the Rayleigh-Ritz values of the covariance matrix R, thus, reducing the computational complexity of the overall approach to O(dM2). Our numerical results, using data from the radio observatory Long Wavelength Array (LWA-1), demonstrate the effectiveness of both proposed approaches to remove strong RFI, with the QMAM-based approach still being computationally efficient.

Comments

Original published version available at

https://doi.org/10.1142/S225117172450003X

Publication Title

Journal of Astronomical Instrumentation

DOI

https://doi.org/10.1142/S225117172450003X

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.