Document Type

Article

Publication Date

2024

Abstract

Pulsar timing arrays (PTA) hunt for gravitational waves (GW) by searching for the correlations that GWs induce in the time-of-arrival residuals from different pulsars. If the GW sources are of astrophysical origin, then they are located at discrete points on the sky. However, PTA data are often modeled, and subsequently analyzed, via a "standard Gaussian ensemble". That ensemble is obtained in the limit of an infinite density of vanishingly weak, Poisson-distributed sources. In this paper, we move away from that ensemble, to study the effects of two types of "source anisotropy". The first (a), which is often called "shot noise", arises because there are N discrete GW sources at specific sky locations. The second (b) arises because the GW source positions are not a Poisson process, for example, because galaxy locations are clustered. Here, we quantify the impact of (a) and (b) on the mean and variance of the pulsar-averaged Hellings and Downs correlation. For conventional PTA sources, we show that the effects of shot noise (a) are much larger than the effects of clustering (b).

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.