Physics & Astronomy Faculty Publications and Presentations

Document Type

Article

Publication Date

8-2025

Abstract

The interaction between atoms and a quantized radiation field is fundamentally important in quantum optics and quantum information science. Due to their unusual properties, Rydberg atoms are promising building blocks for two-qubit gates and atom-light quantum interfaces, exploiting the Rydberg blockade interaction which prevents two atoms at close distance (< 10μm) from being simultaneously excited to Rydberg states. Recently, this effect was used to engineer quantum processors based on arrays of interacting Rydberg atoms illuminated by Raman lasers. Motivated by these experiments, we extend the Jaynes–Cummings model to study the interaction between two Rydberg atoms interacting by the Rydberg blockade and a quantized radiation field. We consider both number (Fock) states of the field and single-mode quantum coherent states. In particular, we discuss different types of entanglements between various components of the total system consisting of the two Rydberg-interacting atoms and coherent states of the field, and show that the behavior is significantly different compared to a system with non-interacting atoms corresponding to the two-atom Tavis-Cummings model. Our results are relevant in view of atom-light quantum interfaces as components for future long-distance quantum communication.

Comments

http://creativecommons.org/licenses/by-nc-nd/4.0/

Publication Title

Physics Open

DOI

10.1016/j.physo.2025.100292

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.