Document Type

Article

Publication Date

9-10-2015

Abstract

Among efforts to detect gravitational radiation, pulsar timing arrays are uniquely poised to detect \"memory\" signatures, permanent perturbations in spacetime from highly energetic astrophysical events such as mergers of supermassive black hole binaries. The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) observes dozens of the most stable millisecond pulsars using the Arecibo and Green Bank radio telescopes in an effort to study, among other things, gravitational wave memory. We herein present the results of a search for gravitational wave bursts with memory (BWMs) using the first five years of NANOGrav observations. We develop original methods for dramatically speeding up searches for BWM signals. In the directions of the sky where our sensitivity to BWMs is best, we would detect mergers of binaries with reduced masses of 109 M⊙out to distances of 30 Mpc; such massive mergers in the Virgo cluster would be marginally detectable. We find no evidence for BWMs. However, with our non-detection, we set upper limits on the rate at which BWMs of various amplitudes could have occurred during the time spanned by our datae.g., BWMs with amplitudes greater than 10?13 must encounter the Earth at a rate less than 1.5 yr?1.

Comments

© Astrophysical Journal. Original version available at: http://doi.org/10.1088/0004-637X/810/2/150

Publication Title

Astrophysical Journal

DOI

10.1088/0004-637X/810/2/150

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.