School of Medicine Publications and Presentations

Document Type

Article

Publication Date

3-1-2019

Abstract

Spatial or temporal aspects of neural organization are known to be important indices of how cognition is organized. However, measurements and estimations are often noisy and many of the algorithms used are probabilistic, which in combination have been argued to limit studies exploring the neural basis of specific aspects of cognition. Focusing on static and dynamic functional connectivity estimations, we propose to leverage this variability to improve statistical efficiency in relating these estimations to behavior. To achieve this goal, we use a procedure based on permutation testing that provides a way of combining the results from many individual tests that refer to the same hypothesis. This is needed when testing a measure whose value is obtained from a noisy process, which can be repeated multiple times, referred to as replications. Focusing on functional connectivity, this noisy process can be: (a) computational, for example, when using an approximate inference algorithm for which different runs can produce different results or (b) observational, if we have the capacity to acquire data multiple times, and the different acquired data sets can be considered noisy examples of some underlying truth. In both cases, we are not interested in the individual replications but on the unobserved process generating each replication. In this note, we show how results can be combined instead of choosing just one of the estimated models. Using both simulations and real data, we show the benefits of this approach in practice.

Comments

Copyright © 2018 The Authors.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

First Page

1234

Last Page

1243

Publication Title

Human brain mapping

DOI

10.1002/hbm.24442

Academic Level

faculty

Mentor/PI Department

Office of Human Genetics

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.