School of Medicine Publications and Presentations

Document Type

Article

Publication Date

2017

Abstract

Variation in body fat distribution contributes to the metabolic sequelae of obesity. The genetic determinants of body fat distribution are poorly understood. The goal of this study was to gain new insights into the underlying genetics of body fat distribution by conducting sample-size weighted fixed-effects genome-wide association meta-analyses in up to 9,594 women and 8,738 men for six ectopic fat traits in European, African, Hispanic, and Chinese ancestry populations, with and without sex stratification. In total, 7 new loci were identified in association with ectopic fat traits (ATXN1, UBE2E2, EBF1, RREB1, GSDMB, GRAMD3 and ENSA; PATXN1 and UBE2E2 in primary mouse adipose progenitor cells impaired adipocyte differentiation, suggesting a physiological role for ATXN1 and UBE2E2 in adipogenesis. Future studies are necessary to further explore the mechanisms by which these genes impact adipocyte biology and how their perturbations contribute to systemic metabolic disease.

Comments

© 2016, Springer Nature. Original published version available at https://dx.doi.org/10.1038%2Fng.3738

First Page

125

Last Page

130

Publication Title

Nature Genetics

DOI

10.1038/ng.3738

Academic Level

faculty

Mentor/PI Department

Office of Human Genetics

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.