School of Medicine Publications and Presentations

Document Type

Article

Publication Date

11-1-2013

Abstract

Objective

Several lines of evidence indicate that white matter integrity is compromised in bipolar disorder, but the nature, extent, and biological causes remain elusive. To determine the extent to which white matter deficits in bipolar disorder are familial, the authors investigated white matter integrity in a large sample of bipolar patients, unaffected siblings, and healthy comparison subjects.

Method

The authors collected diffusion imaging data for 64 adult bipolar patients, 60 unaffected siblings (including 54 discordant sibling pairs), and 46 demographically matched comparison subjects. Fractional anisotropy was compared between the groups using voxel-wise tract-based spatial statistics and by extracting mean fractional anisotropy from 10 regions of interest. Additionally, intra-class correlation coefficients were calculated between the sibling pairs as an index of familiality.

Results

Widespread fractional anisotropy reductions in bipolar patients (>40,000 voxels) and more subtle reductions in their siblings, mainly restricted to the corpus callosum, posterior thalamic radiations, and left superior longitudinal fasciculus (>2,000 voxels) were observed. Similarly, region-of-interest analysis revealed significant reductions in most white matter regions in patients. In siblings, fractional anisotropy in the posterior thalamic radiation and the forceps was nominally reduced. Significant between-sibling correlations were found for mean fractional anisotropy across the tract-based spatial statistic skeleton, within significant clusters, and within nearly all regions of interest.

Conclusions

These findings emphasize the relevance of white matter to neuropathology and familiality of bipolar disorder and encourage further use of white matter integrity markers as endophenotypes in genetic studies.

First Page

1317

Last Page

25

Publication Title

The American journal of psychiatry

DOI

10.1176/appi.ajp.2013.12111462

Academic Level

faculty

Mentor/PI Department

Office of Human Genetics

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.