School of Medicine Publications and Presentations

Document Type

Article

Publication Date

1-2024

Abstract

CC-chemokine ligand 2 (CCL2) is involved in the pathogenesis of several diseases associated with monocyte/macrophage recruitment, such as HIV-associated neurocognitive disorder (HAND), tuberculosis, and atherosclerosis. The rs1024611 (alleles:A>G; G is the risk allele) polymorphism in the CCL2 cis-regulatory region is associated with increased CCL2 expression in vitro and ex vivo, leukocyte mobilization in vivo, and deleterious disease outcomes. However, the molecular basis for the rs1024611-associated differential CCL2 expression remains poorly characterized. It is conceivable that genetic variant(s) in linkage disequilibrium (LD) with rs1024611 could mediate such effects. Previously, we used rs13900 (alleles: C>T) in the CCL2 3’ untranslated region (3’ UTR) that is in perfect LD with rs1024611 to demonstrate allelic expression imbalance (AEI) of CCL2 in heterozygous individuals. Here we tested the hypothesis that the rs13900 could modulate CCL2 expression by altering mRNA turnover and/or translatability. The rs13900 T allele conferred greater stability to the CCL2 transcript when compared to the rs13900 C allele. The rs13900 T allele also had increased binding to Human Antigen R (HuR), an RNA-binding protein, in vitro and ex vivo. The rs13900 alleles imparted differential activity to reporter vectors and influenced the translatability of the reporter transcript. We further demonstrated a role for HuR in mediating allele-specific effects on CCL2 expression in overexpression and silencing studies. The presence of the rs1024611G-rs13900T conferred a distinct transcriptomic signature related to inflammation and immunity. Our studies suggest that the differential interactions of HuR with rs13900 could modulate CCL2 expression and explain the interindividual differences in CCL2-mediated disease susceptibility.

Comments

© 2024, Akhtar et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publication Title

eLife

DOI

https://doi.org/10.7554/eLife.93108.1

Academic Level

faculty

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.