School of Medicine Publications and Presentations

Document Type

Article

Publication Date

10-19-2024

Abstract

Polyvinyl alcohol (PVA) hydrogels have a wide range of applications in the pharmaceutical and biomedicine fields due to their exceptional biophysical properties. The study focuses on preparing and characterizing capsule-shaped PVA hydrogels to enhance their biocompatibility and porosity for controlled glucose release and cell proliferation. The hydrogels were prepared using different concentrations (Cs) and molecular weights (MWs) of PVA, with two different lengths, A (10 mm) and B (20 mm), to control glucose release over 60 min. The preparation process involved PVA gel preparation and PVA hydrogel formation. A total of 500 µL of glucose was injected into all dehydrated hydrogels in groups A and B. Glucose release was studied by immersing the hydrogels in saline at 37 °C with stirring at 500 rpm. The SUP-B15 cell line was grown in six A1 hydrogels for biocompatibility testing. The results indicate that all hydrogels remained stable at 37 °C without degrading. Those with a higher C and MW exhibited a denser and less porous structure, lower glucose storage capacity, and higher elongation at break. Significant differences in glucose release, diffusion speed, and flux were observed, which were more evident in A1 > A4, B1 > B4, and B1 > A1 over 60 min. A1 and B1 had higher values because their higher porosity distribution allowed glucose to diffuse more easily. B1, being larger, has more glucose due to its increased length. The cell growth response and viability at 48 h in contact with the hydrogels was similar to that of the control (4.5 × 105 cells/mL, 98.5% vs. 4.8 × 105 cells/mL, 99.7% viability), thus demonstrating biocompatibility. The hydrogels effectively released glucose over 60 min, with variations based on porosity, C, MW, and length, and demonstrated good biocompatibility with the cell line.

Comments

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Publication Title

Gels

DOI

https://doi.org/10.3390/gels10100668

Academic Level

faculty

Mentor/PI Department

Population Health and Biostatistics

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.