School of Medicine Publications and Presentations

Document Type

Article

Publication Date

2025

Abstract

Synapse dysfunction is an early event in Alzheimer’s disease (AD) caused by various factors, including amyloid beta, p-tau, inflammation, and aging. However, the precise molecular mechanism underlying synapse dysfunction in AD remains largely unknown. To understand this, we comprehensively analyzed the synaptosomes fraction in post-mortem brain samples from AD patients and cognitively normal individuals. We conducted high-throughput transcriptomic analyses to identify changes in microRNA (miRNA) and mRNA levels in synaptosomes extracted from the brains of unaffected individuals and those with AD. Additionally, we performed mass spectrometry analysis of synaptosomal proteins in the same sample group. These analyses revealed significant differences in the levels of miRNAs, mRNAs, and proteins between the two groups. To gain further insights into the pathways or molecules involved, we employed an integrated omics approach to study the molecular interactions of deregulated synapse miRNAs, mRNAs, and proteins in samples from individuals with AD and the control group, demonstrating the impact of deregulated miRNAs on their target mRNAs and proteins. Furthermore, the DIABLO analysis revealed complex relationships among mRNAs, miRNAs, and proteins that could be key in understanding the pathophysiology of AD. Our study identified novel synapse-associated candidates that could be critical in restoring synapse dysfunction in AD.

Comments

This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Publication Title

Molecular Psychiatry

DOI

10.1038/s41380-025-03095-w

Academic Level

faculty

Mentor/PI Department

Immunology and Microbiology

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.