School of Medicine Publications and Presentations

Document Type

Article

Publication Date

7-10-2025

Abstract

The BCG vaccine has been used against tuberculosis (TB) for over a hundred years; however, it does not protect adults from pulmonary TB. To develop alternative vaccines against TB, we generated Mycobacterium tuberculosis H37Rv (Mtb)-derived vaccine strains by rationally deleting key virulent genes, resulting in single (SKO; ΔfbpA), double (DKO; ΔfbpA-ΔsapM), triple (TKO-D; ΔfbpA-ΔsapM-ΔdosR and TKO-Z; ΔfbpA-ΔsapM-Δzmp1), and quadruple (QKO; ΔfbpA-ΔsapM-Δzmp1-dosR) strains. To understand how macrophages, the host cells that defend against infection and process antigens for presentation to immune cells, respond to these vaccine strains, we performed transcriptomic analyses of mouse bone marrow-derived macrophages (BMDMs) infected with these strains. The transcriptomic data were compared with similar data obtained from macrophages infected with Mtb H37Rv and BCG. Our analyses revealed that genes associated with various immune and cell signaling pathways, such as NF-kappa B signaling, TNF signaling, cytokine-cytokine receptor interaction, chemokine signaling, hematopoietic cell lineage, Toll-like receptor signaling, IL-17 signaling, Th1 and Th2 cell differentiation, Th17 cell differentiation, and T cell receptor signaling were differentially expressed in BMDMs infected with our vaccine strains. Enhanced expression of cytokines and chemokines, including proinflammatory cytokines such as TNF-α, IL-6, GM-CSF, and IL-1, which are essential for the immune response against Mtb infection, was also observed in BMDMs infected with these strains. In particular, BMDMs infected with all vaccine strains exhibited a significant upregulation of genes associated with the IL-17 pathway. These results may indicate that our vaccine strains could induce a protective immune response against TB.

Comments

© 2025 Veerapandian, Yang, Carmona, Sedano, Reid, Jimenez, Chacon, Jagannath, Ramos, Gadad and Dhandayuthapani. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY).

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publication Title

Frontiers in Immunology

DOI

10.3389/fimmu.2025.1583439

Academic Level

faculty

Mentor/PI Department

Immunology and Microbiology

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.