School of Medicine Publications and Presentations
Document Type
Article
Publication Date
2-2021
Abstract
Background: Our aim was to investigate if moderate to vigorous physical activity (MVPA), calcium intake interacts with bone mineral density (BMD)-related single nucleotide polymorphisms (SNPs) to influence BMD in 750 Hispanic children (4-19y) of the cross-sectional Viva La Familia Study.
Methods: Physical activity and dietary intake were measured by accelerometers and multiple-pass 24 h dietary recalls, respectively. Total body and lumbar spine BMD were measured by dual energy X-ray absorptiometry. A polygenic risk score (PRS) was computed based on SNPs identified in published literature. Regression analysis was conducted with PRSs, MVPA and calcium intake with total body and lumbar spine BMD.
Results: We found evidence of statistically significant interaction effects between the PRS and MVPA on total body BMD and lumbar spine BMD (p < 0.05). Higher PRS was associated with a lower total body BMD (β = − 0.040 ± 0.009, p = 1.1 × 10− 5 ) and lumbar spine BMD (β = − 0.042 ± 0.013, p = 0.0016) in low MVPA group, as compared to high MVPA group (β = − 0.015 ± 0.006, p = 0.02; β = 0.008 ± 0.01, p = 0.4, respectively).
Discussion: The study indicated that calcium intake does not modify the relationship between genetic variants and BMD, while it implied physical activity interacts with genetic variants to affect BMD in Hispanic children. Due to limited sample size of our study, future research on gene by environment interaction on bone health and functional studies to provide biological insights are needed.
Recommended Citation
Hou, R., Cole, S.A., Graff, M. et al. Genetic variants and physical activity interact to affect bone density in Hispanic children. BMC Pediatr 21, 79 (2021). https://doi.org/10.1186/s12887-021-02537-y
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Publication Title
BMC Pediatrics
DOI
10.1186/s12887-021-02537-y
Academic Level
faculty
Mentor/PI Department
Office of Human Genetics
Comments
© The Author(s). 2021