School of Medicine Publications and Presentations

Document Type

Article

Publication Date

8-2021

Abstract

Exosomes are a unique subpopulation of naturally occurring extracellular vesicles which are smaller intracellular membrane nanoparticle vesicles. Exosomes have proven to be excellent nanocarriers for carrying lipids, proteins, mRNAs, non-coding RNAs, and DNAs, and disseminating long-distance intercellular communications in various biological processes. Among various cell-line or biological fluid derived exosomes, milk exosomes are abundant in nature and exhibit many nanocarrier characteristics favorable for theranostic applications. To be an effective delivery carrier for their clinical translation, exosomes must inbuilt loading, release, targeting, and imaging/tracking characteristics. Considering the unmet gaps of milk exosomes in theranostic technology it is essential to focus the current review on drug delivery and imaging applications. This review delineates the efficiency of exosomes to load therapeutic or imaging agents and their successful delivery approaches. It is emphasized on possible modifications of exosomes towards increasing the stability and delivery of agents. This article also summarizes the specific applications and the process of developing milk exosomes as a future pharmaceutical drug delivery vehicle.

Comments

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publication Title

Bioactive materials

DOI

10.1016/j.bioactmat.2021.01.009

Academic Level

faculty

Mentor/PI Department

Immunology and Microbiology

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.