School of Medicine Publications and Presentations

Document Type

Article

Publication Date

8-2012

Abstract

Machine learning has become a powerful tool for analysing medical domains, assessing the importance of clinical parameters, and extracting medical knowledge for outcomes research. In this paper, we present a machine learning method for extracting diagnostic and prognostic thresholds, based on a symbolic classification algorithm called REMED. We evaluated the performance of our method by determining new prognostic thresholds for well-known and potential cardiovascular risk factors that are used to support medical decisions in the prognosis of fatal cardiovascular diseases. Our approach predicted 36% of cardiovascular deaths with 80% specificity and 75% general accuracy. The new method provides an innovative approach that might be useful to support decisions about medical diagnoses and prognoses.

Comments

© 2012 Luis J. Mena et al.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publication Title

Computational and Mathematical Methods in Medicine

DOI

10.1155/2012/750151

Academic Level

faculty

Mentor/PI Department

Neuroscience

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.