School of Medicine Publications and Presentations
Document Type
Article
Publication Date
2-2022
Abstract
Marburg, a RNA virus (MRV), is responsible for causing hemorrhagic fever that affects humans and non-human primates. World Health Organization (WHO), National Institutes of Health (NIH) and Centre of Disease Control and Prevention (CDC) considered this as an extremely dangerous virus, thus categorised as risk group 4, category A priority pathogen and category “A” bioterrorism agent, respectively. Despite of all these alarming concerns, no prophylaxis arrangements are available against this virus till date. In fact, the construction of immunogenic vaccine candidates by traditional molecular immunology methods is time consuming and very expensive. Considering these concerns, herein, we have designed CD4 + T Cell multiepitopes against MRV using in silico approach. The pin-point criteria of the screening and selection of potential epitopes are, non-mutagenic, antigenic, large HLAs coverage, non-toxic and high world population coverage. This kind of methodology and investigations can precisely reduce the expenditure and valuable time for experimental planning in development of vaccines in laboratories. In current scenario, researchers are frequently using in silico approaches to speed up their vaccine-based lab studies. The computational studies are highly valuable for the screening of large epitope dataset into smaller one prior to in vitro and in vivo confirmatory analyses.
Recommended Citation
Dhasmana, A., Dhasmana, S., Alsulimani, A., Kotnala, S., Kashyap, V. K., Haque, S., ... & Chauhan, S. C. (2021). In silico CD4+ T-cell multiepitope prediction and HLA distribution analysis for Marburg Virus—A strategy for vaccine designing. Journal of King Saud University-Science, 101751. https://doi.org/10.1016/j.jksus.2021.101751
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Publication Title
Journal of King Saud University – Science
DOI
10.1016/j.jksus.2021.101751
Academic Level
faculty
Mentor/PI Department
Immunology and Microbiology
Comments
Copyright 2021 The Authors. Published by Elsevier B.V. on behalf of King Saud University.