School of Medicine Publications and Presentations
Document Type
Article
Publication Date
3-1-2022
Abstract
An early detection tool for latent COVID-19 infections in oncology staff and patients is essential to prevent outbreaks in a cancer center. (1) Background: In this study, we developed and implemented two early detection tools for the radiotherapy area to identify COVID-19 cases opportunely. (2) Methods: Staff and patients answered a questionnaire (electronic and paper surveys, respectively) with clinical and epidemiological information. The data were collected through two online survey tools: Real-Time Tracking (R-Track) and Summary of Factors (S-Facts). Cut-off values were established according to the algorithm models. SARS-CoV-2 qRT-PCR tests confirmed the positive algorithms individuals. (3) Results: Oncology staff members (n = 142) were tested, and 14% (n = 20) were positives for the R-Track algorithm; 75% (n = 15) were qRT-PCR positive. The S-Facts Algorithm identified 7.75% (n = 11) positive oncology staff members, and 81.82% (n = 9) were qRT-PCR positive. Oncology patients (n = 369) were evaluated, and 1.36% (n = 5) were positive for the Algorithm used. The five patients (100%) were confirmed by qRT-PCR. (4) Conclusions: The proposed early detection tools have proved to be a low-cost and efficient tool in a country where qRT-PCR tests and vaccines are insufficient for the population. View Full-Text
Recommended Citation
González-Escamilla, M.; Pérez-Ibave, D.C.; Burciaga-Flores, C.H.; Ortiz-Murillo, V.N.; Ramírez-Correa, G.A.; Rodríguez-Niño, P.; Piñeiro-Retif, R.; Rodríguez-Gutiérrez, H.F.; Alcorta-Nuñez, F.; González-Guerrero, J.F.; Vidal-Gutiérrez, O.; Garza-Rodríguez, M.L. Epidemiological Algorithm for Early Detection of COVID-19 Cases in a Mexican Oncologic Center. Healthcare 2022, 10, 462. https://doi.org/10.3390/healthcare10030462
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Publication Title
Healthcare
DOI
10.3390/healthcare10030462
Academic Level
faculty
Mentor/PI Department
Molecular Science
Comments
Copyright 2022 the Authors.