School of Medicine Publications and Presentations
Document Type
Article
Publication Date
5-12-2022
Abstract
Human immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND) comprise a group of illnesses marked by memory and behavioral dysfunction that can occur in up to 50% of HIV patients despite adequate treatment with combination antiretroviral drugs. Iron dyshomeostasis exacerbates HIV-1 infection and plays a major role in Alzheimer’s disease pathogenesis. In addition, persons living with HIV demonstrate a high prevalence of neurodegenerative disorders, indicating that HAND provides a unique opportunity to study ferroptosis in these conditions. Both HIV and combination antiretroviral drugs increase the risk of ferroptosis by augmenting ferritin autophagy at the lysosomal level. As many viruses and their proteins exit host cells through lysosomal exocytosis, ferroptosis-driving molecules, iron, cathepsin B and calcium may be released from these organelles. Neurons and glial cells are highly susceptible to ferroptosis and neurodegeneration that engenders white and gray matter damage. Moreover, iron-activated microglia can engage in the aberrant elimination of viable neurons and synapses, further contributing to ferroptosis-induced neurodegeneration. In this mini review, we take a closer look at the role of iron in the pathogenesis of HAND and neurodegenerative disorders. In addition, we describe an epigenetic compensatory system, comprised of bromodomain-containing protein 4 (BRD4) and microRNA-29, that may counteract ferroptosis by activating cystine/glutamate antiporter, while lowering ferritin autophagy and iron regulatory protein-2. We also discuss potential interventions for lysosomal fitness, including ferroptosis blockers, lysosomal acidification, and cathepsin B inhibitors to achieve desirable therapeutic effects of ferroptosis-induced neurodegeneration.
Recommended Citation
Sfera, A., Thomas, K. G., Andronescu, C. V., Jafri, N., Sfera, D. O., Sasannia, S., Zapata-Martín Del Campo, C. M., & Maldonado, J. C. (2022). Bromodomains in Human-Immunodeficiency Virus-Associated Neurocognitive Disorders: A Model of Ferroptosis-Induced Neurodegeneration. Frontiers in neuroscience, 16, 904816. https://doi.org/10.3389/fnins.2022.904816
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Publication Title
Frontiers in Neuroscience
DOI
10.3389/fnins.2022.904816
Academic Level
faculty
Mentor/PI Department
Internal Medicine
Comments
© 2022 Sfera, Thomas, Andronescu, Jafri, Sfera, Sasannia, Zapata-Martín del Campo and Maldonado