School of Medicine Publications and Presentations

Document Type

Article

Publication Date

8-20-2022

Abstract

Early-stage pancreatic cancer remains challenging to detect, leading to a poor five-year patient survival rate. This obstacle necessitates the development of early detection approaches based on novel technologies and materials. In this work, the presence of a specific pancreatic cancer-derived miRNA (pre-miR-132) is detected using the fluorescence properties of biocompatible nitrogen-doped graphene quantum dots (NGQDs) synthesized using a bottom-up approach from a single glucosamine precursor. The sensor platform is comprised of slightly positively charged (1.14 ± 0.36 mV) NGQDs bound via π-π stacking and/or electrostatic interactions to the negatively charged (-22.4 ± 6.00 mV) bait ssDNA; together, they form a complex with a 20 nm average size. The NGQDs' fluorescence distinguishes specific single-stranded DNA sequences due to bait-target complementarity, discriminating them from random control sequences with sensitivity in the micromolar range. Furthermore, this targetability can also detect the stem and loop portions of pre-miR-132, adding to the practicality of the biosensor. This non-invasive approach allows cancer-specific miRNA detection to facilitate early diagnosis of various forms of cancer.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publication Title

Materials

DOI

10.3390/ma15165760

Academic Level

medical student

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.