Posters
Presentation Type
Poster
Discipline Track
Translational Science
Abstract Type
Research/Clinical
Abstract
Background: High-risk strains of HPV are known to cause cervical cancer. Multiple clinical studies have emphasized that smoking and drinking are critical risk factors for cervical cancer and its high-grade precursors. In this study, we investigated the molecular mechanisms involved in the interplay of smoking and/or drinking with HPV infectivity and defined a systematic therapeutic approach for their attenuation in cervical cancer.
Methods: The impact of benzo[a]pyrene (B[a]P) and/or ethanol (EtOH) exposure on cervical cancer cells was assessed by measuring changes in their biophysical, cell migration, and invasion characteristics. Expression of HPV16 E6/E7, NF-κB, cytokines, and inflammation mediators was determined using qRT-PCR, immunoblotting, ELISA, luciferase reporter assay, and confocal microscopy.
Results: Treatments with B[a]P and/or EtOH altered the expression of HPV16 E6/E7 oncogenes and EMT markers in cervical cancer cells; it also enhanced migration and invasion. In addition, B[a]P and/or EtOH exposure promoted inflammation pathways through TNF-α and NF-κB signaling, leading to IL-6 upregulation and activation of VEGF. The molecular effects caused by B[a]P and/or EtOH exposure were effectively attenuated by curcumin (Cur)/PLGA-Cur treatment.
Conclusions: These data suggest a molecular link between smoking, drinking, and HPV infectivity in cervical carcinogenesis. In addition, attenuation of these effects by treatment with Cur/PLGA-Cur treatment implies the role of curcumin.
Recommended Citation
Kashyap, Vivek Kumar, "Smoking and Drinking Activate NF-κB /IL-6 Axis to Promote Inflammation During Cervical Carcinogenesis" (2024). Research Symposium. 92.
https://scholarworks.utrgv.edu/somrs/2024/posters/92
Included in
Smoking and Drinking Activate NF-κB /IL-6 Axis to Promote Inflammation During Cervical Carcinogenesis
Background: High-risk strains of HPV are known to cause cervical cancer. Multiple clinical studies have emphasized that smoking and drinking are critical risk factors for cervical cancer and its high-grade precursors. In this study, we investigated the molecular mechanisms involved in the interplay of smoking and/or drinking with HPV infectivity and defined a systematic therapeutic approach for their attenuation in cervical cancer.
Methods: The impact of benzo[a]pyrene (B[a]P) and/or ethanol (EtOH) exposure on cervical cancer cells was assessed by measuring changes in their biophysical, cell migration, and invasion characteristics. Expression of HPV16 E6/E7, NF-κB, cytokines, and inflammation mediators was determined using qRT-PCR, immunoblotting, ELISA, luciferase reporter assay, and confocal microscopy.
Results: Treatments with B[a]P and/or EtOH altered the expression of HPV16 E6/E7 oncogenes and EMT markers in cervical cancer cells; it also enhanced migration and invasion. In addition, B[a]P and/or EtOH exposure promoted inflammation pathways through TNF-α and NF-κB signaling, leading to IL-6 upregulation and activation of VEGF. The molecular effects caused by B[a]P and/or EtOH exposure were effectively attenuated by curcumin (Cur)/PLGA-Cur treatment.
Conclusions: These data suggest a molecular link between smoking, drinking, and HPV infectivity in cervical carcinogenesis. In addition, attenuation of these effects by treatment with Cur/PLGA-Cur treatment implies the role of curcumin.