Posters

Presenting Author

Cristian M. Botello

Academic/Professional Position (Other)

PhD Student

Presentation Type

Poster

Discipline Track

Biomedical Science

Abstract Type

Research/Clinical

Abstract

Background: Mus Musculus is one of the first and one of the most widely used animal models in current neuroscience literature (Phifer-Riley & Nachmann, 2015). However, the research community needs alternatives to rodent models to study the mammalian brain. Research is needed to see if antibodies that target tyrosine hydroxylase, which are well researched in mice, can also be used to study the Monodelphis domestica brain.

Methods: Following transcardial perfusions and brain extractions, mouse and opossum brains were processed and stained for tyrosine hydroxylase (and with Nissl). Opossum brains will then be sliced and processed using IHC methods to compare two TH antibodies (EMD Millipore and Pelfreeze).

Results: Differences include that the Monodelphis has a much larger ventricle in the forebrain area and the mouse brain corpus callosum forms and fuses before the hippocampus compared to the opossum brain, where these fibers are formed more posterior to the formation of the hippocampus. The corpus callosum of the Monodelphis is also less prominent than the anterior commissure. The results of the different antibodies will be presented at the symposium.

Conclusions: Although there are differences between the mouse and the opossum brain, there are also many similarities. Further research is needed to determine what these differences could mean in behavior and cognition. Both EMD Millipore and Pelfreeze make TH antibodies that have been looked at in mice and replicated. More research is needed to determine if the antibodies can be used for other animals, including the Monodelphis.

Share

COinS
 

Investigating Monodelphis Domestica as an Alternative to the Mus Musculus as an Animal Model

Background: Mus Musculus is one of the first and one of the most widely used animal models in current neuroscience literature (Phifer-Riley & Nachmann, 2015). However, the research community needs alternatives to rodent models to study the mammalian brain. Research is needed to see if antibodies that target tyrosine hydroxylase, which are well researched in mice, can also be used to study the Monodelphis domestica brain.

Methods: Following transcardial perfusions and brain extractions, mouse and opossum brains were processed and stained for tyrosine hydroxylase (and with Nissl). Opossum brains will then be sliced and processed using IHC methods to compare two TH antibodies (EMD Millipore and Pelfreeze).

Results: Differences include that the Monodelphis has a much larger ventricle in the forebrain area and the mouse brain corpus callosum forms and fuses before the hippocampus compared to the opossum brain, where these fibers are formed more posterior to the formation of the hippocampus. The corpus callosum of the Monodelphis is also less prominent than the anterior commissure. The results of the different antibodies will be presented at the symposium.

Conclusions: Although there are differences between the mouse and the opossum brain, there are also many similarities. Further research is needed to determine what these differences could mean in behavior and cognition. Both EMD Millipore and Pelfreeze make TH antibodies that have been looked at in mice and replicated. More research is needed to determine if the antibodies can be used for other animals, including the Monodelphis.

blog comments powered by Disqus
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.