Talks

Presenting Author

Eron Grant Manusov

Presentation Type

Oral Presentation

Discipline Track

Translational Science

Abstract Type

Research/Clinical

Abstract

Background: Frailty can be described as a phenotype (e.g., sarcopenia, reduced grip strength, decreased VO2 max) or as a ratio of deficits, i.e., a Frailty Index (FI). FI predicts survival, death, cognitive impairment, falls, and hospitalizations. Frailty is influenced by both genes and environment. We calculated the FI as the sum of measured deficits divided by the total number of items assessed in a pedigree-based sample of 1,029 Mexican Americans participants in the San Antonio Family Heart Study. We performed a novel search for genotype-by-environment interactions (GXE) influencing FI. Such interactions lead to heritable differences between individuals in their responses to the environment.

Methods: We investigated a panel of 34 measured environmental factors to look for GXE influencing frailty. We employed a powerful polygenic approach to genotype-by-environment modeling, allowing for both dichotomous and continuous environmental measures. We performed likelihood-based estimation of parameters and tests for the presence of GXE.

Results: GXE interactions influencing frailty were observed for the following environments: obesity (P=7.9E-10), hypertriglyceridemia (P=2.74E-09), low HDL (P=2.15E-06), impaired glucose status (P=.002), hypertension (P=0.01), and diabetes (P=0.02), Additionally, GXE interactions were detected for a number of quantitative dietary components: carbohydrates (P=5.73E-07), fats (P=2.01E-06), fiber (P=2.76E-05), dietary cholesterol (P=0.01), and protein ( P=0.006). These results document substantial statistical evidence for the interactive effects of genes and environmental factors on frailty.

Conclusion: Our results support the presence of substantive gene-by-environmental interactions influencing frailty. This finding documents the presence of heritable differences between individuals that lead to differential response to environmental challenges.

Academic/Professional Position

Faculty

Mentor/PI Department

Office of Human Genetics

Share

COinS
 

Gene-by-Environment Expression and Calculation of the Frailty Index

Background: Frailty can be described as a phenotype (e.g., sarcopenia, reduced grip strength, decreased VO2 max) or as a ratio of deficits, i.e., a Frailty Index (FI). FI predicts survival, death, cognitive impairment, falls, and hospitalizations. Frailty is influenced by both genes and environment. We calculated the FI as the sum of measured deficits divided by the total number of items assessed in a pedigree-based sample of 1,029 Mexican Americans participants in the San Antonio Family Heart Study. We performed a novel search for genotype-by-environment interactions (GXE) influencing FI. Such interactions lead to heritable differences between individuals in their responses to the environment.

Methods: We investigated a panel of 34 measured environmental factors to look for GXE influencing frailty. We employed a powerful polygenic approach to genotype-by-environment modeling, allowing for both dichotomous and continuous environmental measures. We performed likelihood-based estimation of parameters and tests for the presence of GXE.

Results: GXE interactions influencing frailty were observed for the following environments: obesity (P=7.9E-10), hypertriglyceridemia (P=2.74E-09), low HDL (P=2.15E-06), impaired glucose status (P=.002), hypertension (P=0.01), and diabetes (P=0.02), Additionally, GXE interactions were detected for a number of quantitative dietary components: carbohydrates (P=5.73E-07), fats (P=2.01E-06), fiber (P=2.76E-05), dietary cholesterol (P=0.01), and protein ( P=0.006). These results document substantial statistical evidence for the interactive effects of genes and environmental factors on frailty.

Conclusion: Our results support the presence of substantive gene-by-environmental interactions influencing frailty. This finding documents the presence of heritable differences between individuals that lead to differential response to environmental challenges.

blog comments powered by Disqus
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.