Talks
Presentation Type
Oral Presentation
Discipline Track
Biomedical Science
Abstract Type
Research/Clinical
Abstract
Background: Baboons exhibit a genetic generalized epilepsy (GGE) that resembles juvenile myoclonic epilepsy and may represent a suitable genetic model for human epilepsy. The genetic underpinnings of epilepsy were investigated in a baboon colony at the Southwest National Primate Research Center (San Antonio, TX) through the analysis of whole-genome sequence (WGS) data.
Methods: Baboon WGS data were obtained for 38 cases and 19 healthy controls from the NCBI Sequence Read Archive and, after standard QC filtering, two subsets of variants were examined: (1) 20,881 SNPs from baboon homologs of 19 candidate GGE genes; and (2) 36,169 protein-altering SNPs. Association tests were conducted in SOLAR, and gene set enrichment analyses (GSEA) and protein-protein interaction (PPI) network construction were performed on genome-wide significant association results (Pn= 441 genes).
Results: Heritability for epileptic seizure in the pedigreed baboon sample was estimated at 0.76 (SE=0.77; P=0.07). A significant association was detected for an intronic SNP in RBFOX1 (P=5.92 × 10-6; adjusted P=0.016). For protein-altering variants, GSEA revealed significant positive enrichment for genes involved in the extracellular matrix structure (ECM; FDR=0.0072) and collagen formation (FDR=0.017).
Conclusions: SNP association results implicate RBFOX1 in baboon epilepsy, a gene that plays a key role in neuronal excitation and transcriptomic regulation, and has been previously linked to human epilepsy, both focal and generalized. Moreover, protein-damaging variants from across the baboon genome exhibit a wider pattern of association that links collagen-containing ECM to epilepsy risk. These findings suggest a shared genetic etiology between baboon and human forms of GGE.
Recommended Citation
Kos, Mark Z.; Carless, Melanie A.; Blondell, Lucy; Leland, Mary M.; Knape, Koyle D.; Goring, Harald H. H.; and Szabo, Charles A., "Whole genome sequence data implicate RBFOX1 in epilepsy risk in baboons" (2023). Research Symposium. 8.
https://scholarworks.utrgv.edu/somrs/theme1/track1/8
Included in
Animals Commons, Genetics Commons, Medical Neurobiology Commons
Whole genome sequence data implicate RBFOX1 in epilepsy risk in baboons
Background: Baboons exhibit a genetic generalized epilepsy (GGE) that resembles juvenile myoclonic epilepsy and may represent a suitable genetic model for human epilepsy. The genetic underpinnings of epilepsy were investigated in a baboon colony at the Southwest National Primate Research Center (San Antonio, TX) through the analysis of whole-genome sequence (WGS) data.
Methods: Baboon WGS data were obtained for 38 cases and 19 healthy controls from the NCBI Sequence Read Archive and, after standard QC filtering, two subsets of variants were examined: (1) 20,881 SNPs from baboon homologs of 19 candidate GGE genes; and (2) 36,169 protein-altering SNPs. Association tests were conducted in SOLAR, and gene set enrichment analyses (GSEA) and protein-protein interaction (PPI) network construction were performed on genome-wide significant association results (Pn= 441 genes).
Results: Heritability for epileptic seizure in the pedigreed baboon sample was estimated at 0.76 (SE=0.77; P=0.07). A significant association was detected for an intronic SNP in RBFOX1 (P=5.92 × 10-6; adjusted P=0.016). For protein-altering variants, GSEA revealed significant positive enrichment for genes involved in the extracellular matrix structure (ECM; FDR=0.0072) and collagen formation (FDR=0.017).
Conclusions: SNP association results implicate RBFOX1 in baboon epilepsy, a gene that plays a key role in neuronal excitation and transcriptomic regulation, and has been previously linked to human epilepsy, both focal and generalized. Moreover, protein-damaging variants from across the baboon genome exhibit a wider pattern of association that links collagen-containing ECM to epilepsy risk. These findings suggest a shared genetic etiology between baboon and human forms of GGE.