Seasonal detection of atrazine and atzA in man-made waterways receiving agricultural runoff in a subtropical, semi-arid environment (Hidalgo County, Texas, USA)

Document Type

Article

Publication Date

1-24-2017

Abstract

Atrazine is a widely-used herbicide that can impact non-target organisms in the environment but can be biologically degraded by several types of microorganisms. In this study, the gene atzA, which encodes for the initial step in bacterially-mediated atrazine degradation, was used as an indicator of atrazine pollution in agricultural canals located in Hidalgo County, Texas, USA. The concentration of atrazine and atzA were monitored once per month for 12 months during 2010–2011. Atrazine was measured using an enzyme-linked immunosorbent assay; atzA abundance was monitored using Quantitative Polymerase Chain Reaction (Q-PCR) analyses. Abundance of atrazine and atzA were compared with rainy versus dry months and during planting versus non-planting months. Results showed that atrazine levels varied from below detection to 0.43 ppb and were not influenced by precipitation or planting season. Concentrations of the gene atzA were significantly different in rainy versus dry months; during planting versus non-planting times of the year; and in the interaction of precipitation and planting season. The highest concentration of atzA, approx. 4.57 × 108 gene copies ml−1, was detected in July 2010—a rainy, planting month in Hidalgo County, South Texas. However, atrazine was below detection during that month. We conclude that Q-PCR using atzA as an indicator gene is a potential method for monitoring low levels of atrazine pollution in environmental samples.

Comments

https://rdcu.be/cUmeA

Publication Title

World J Microbiol Biotechnol

DOI

10.1007/s11274-017-2207-8

Share

COinS