Document Type
Article
Publication Date
10-22-2019
Abstract
Recent developments in the field of designing novel nanostructures with various functionalities have pushed the scientific world to design and develop high-quality nanomaterials with multifunctional applications. Here, we propose a new kind of doped metal oxide pyrochlore nanostructure for solid-state phosphor, X-ray scintillator, and optical thermometry. The developed samarium-activated La2Hf2O7 (LHOS) nanoparticles (NPs) emit a narrow and stable red emission with lower color temperature and adequate critical distance under near-UV and X-ray excitations. When the LHOS NPs are exposed to an energetic X-ray beam, the Sm3+ ions situated at the symmetric environment get excited along with those located at the asymmetric environment, which results in a low asymmetry ratio of Sm3+ under radioluminescence compared to photoluminescence. High activation energy and adequate thermal sensitivity of the LHOS NPs highlight their potential as a thermal sensor. Our results indicate that these Sm3+-activated La2Hf2O7 NPs can serve as a multifunctional UV, X-ray, and thermographic phosphor.
Recommended Citation
Gupta, S. K., Abdou, M., Zuniga, J. P., Puretzky, A. A., & Mao, Y. (2019). Samarium-Activated La2Hf2O7 Nanoparticles as Multifunctional Phosphors. ACS Omega, 4(19), 17956–17966. https://doi.org/10.1021/acsomega.9b01318
Publication Title
ACS Omega
DOI
10.1021/acsomega.9b01318
Comments
© 2019 American Chemical Society. Original published version available at https://doi.org/10.1021/acsomega.9b01318