Document Type

Article

Publication Date

5-2019

Abstract

Defect, doping and particle size play important roles on the optical performance of nanophosphors. In this study, undoped La2Zr2O7 NPs (LZO) displayed multicolor emission under UV irradiation due to the presence of ionized oxygen vacancies in the band gap. In addition, we explored the effect of particle size of La2Zr2O7:Eu3+ (LZOE) NPs on their structure, surface area, photoluminescence, radioluminescence, lifetime and quantum yield. There is progressive decrease in luminescence output and quantum yield as the coprecipitation pH is raised to prepare the single-source precursors for the molten salt synthesis of the NPs. Under X-ray irradiation, the LZOE NPs emit red light highlighting their potential as X-ray scintillator. We explained the experimental observations based on surface defect analogy. The experimentally obtained emission in violet-blue and red optical regions is correlated to defect related emission. High asymmetry ratio suggested low symmetric environment of Eu3+ ions in the LZO host and the occupancy of Eu3+ ions is more favorable at LaO8 site compared to ZrO6 site. Emission spectra of the LZOE also showed favorable host to dopant (Eu3+) energy transfer. This work provides a clear picture of making highly efficient red phosphor and X-ray scintillator for applications in optoelectronics and X-ray induced theranostics.

Comments

Original published version available at https://doi.org/10.1016/j.jlumin.2019.01.059

Publication Title

Journal of Luminescence

DOI

10.1016/j.jlumin.2019.01.059

Included in

Chemistry Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.