Document Type


Publication Date



Recent developments in the field of designing novel nanostructures with various functionalities have pushed the scientific world to design and develop high-quality nanomaterials with multifunctional applications. Here, we propose a new kind of doped metal oxide pyrochlore nanostructure for solid-state phosphor, X-ray scintillator, and optical thermometry. The developed samarium-activated La2Hf2O7 (LHOS) nanoparticles (NPs) emit a narrow and stable red emission with lower color temperature and adequate critical distance under near-UV and X-ray excitations. When the LHOS NPs are exposed to an energetic X-ray beam, the Sm3+ ions situated at the symmetric environment get excited along with those located at the asymmetric environment, which results in a low asymmetry ratio of Sm3+ under radioluminescence compared to photoluminescence. High activation energy and adequate thermal sensitivity of the LHOS NPs highlight their potential as a thermal sensor. Our results indicate that these Sm3+-activated La2Hf2O7 NPs can serve as a multifunctional UV, X-ray, and thermographic phosphor.


© 2019 American Chemical Society. Original published version available at

Publication Title

ACS Omega



Included in

Chemistry Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.