Document Type

Article

Publication Date

3-31-2021

Abstract

Performance of triboelectric nanogenerators for harvesting mechanical energy from the ambient environment has been limited by structural complexity, cost-effectiveness, and mechanical weakness of materials. Herein, a cost-effective vertical contact separation mode triboelectric nanogenerator using polyethylene (PE) and polycarbonate (PC) in a regular digital versatile disc is reported. This cost-effective nanogenerator with simplified structures is able to generate an open-circuit voltage of 215.3 V and short-circuit current of 80 μA. The effects of the distance of impact and the air gap between the triboelectric layers have also been tested from 3 to 9 cm, and 0.25 to 1 cm, respectively. It is determined that 0.5 cm is the optimal air gap. The nanogenerator is also tested in different real-life scenarios including stresses produced by a moving car, walking, and a rolling skateboard over the nanogenerator. The surfaces of the triboelectric layers are further modified by surface-charge engineering which induced a 460% increase in the output power. These tests reveal a significant electrical response and mechanical stability under stress. In summary, this study demonstrates that the relatively inexpensive PE and PC triboelectric pair has the potential to be used for highly efficient, mechanically robust triboelectric nanogenerators.

Comments

Original published version available at https://doi.org/10.1002/ente.202001088

Publication Title

Energy Technology

DOI

10.1002/ente.202001088

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.