Document Type
Article
Publication Date
7-1-2021
Abstract
A machine learning (ML) methodology that uses a histogram of interaction energies has been applied to predict gas adsorption in metal–organic frameworks (MOFs) using results from atomistic grand canonical Monte Carlo (GCMC) simulations as training and test data. In this work, the method is first extended to binary mixtures of spherical species, in particular, Xe and Kr. In addition, it is shown that single-component adsorption of ethane and propane can be predicted in good agreement with GCMC simulation using a histogram of the adsorption energies felt by a methyl probe in conjunction with the random forest ML method. The results for propane can be improved by including a small number of MOF textural properties as descriptors. We also discuss the most significant features, which provides physical insight into the most beneficial adsorption energy sites for a given application.
Recommended Citation
Li, Zhao, et al. "Machine learning using host/guest energy histograms to predict adsorption in metal–organic frameworks: Application to short alkanes and Xe/Kr mixtures." The Journal of Chemical Physics 155.1 (2021): 014701. https://doi.org/10.1063/5.0050823
Publication Title
The Journal of Chemical Physics
DOI
https://doi.org/10.1063/5.0050823
Comments
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0050823