Mechanical Engineering Faculty Publications and Presentations

Document Type

Conference Proceeding

Publication Date

6-14-2024

Abstract

Expanding on the insights from our initial investigation into railway accident patterns, this paper delves deeper into the predictive capabilities of machine learning to forecast potential accident trends in railway crossings. Focusing on critical factors such as “Highway User Position” and “Equipment Involved,” we integrate Kernel Ridge Regression (KRR) models tailored to distinct clusters, as well as a global model for the entire dataset. These models, trained on historical data, discern patterns and correlations that might elude traditional statistical methods. Our findings are compelling: certain clusters, despite limited data points, showcase remarkably Root Mean Squared Error (RMSE) values between predictions and real data, indicating superior model performance. However, certain clusters hint at potential overfitting, given the disparities between model predictions and actual data. Conversely, clusters with vast datasets underperform compared to the global model, suggesting intricate interactions within the data that might challenge the model’s capabilities. The performance nuances across clusters emphasize the value of specialized, cluster-specific models in capturing the intricacies of each dataset segment. This study underscores the efficacy of KRR in predicting future railway crossing incidents, fostering the implementation of data-driven strategies in public safety.

Comments

Copyright © 2024 by ASME

Publication Title

Proceedings of the 2024 Joint Rail Conference. 2024 Joint Rail Conference

DOI

10.1115/JRC2024-130036

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.