School of Mathematical & Statistical Sciences Faculty Publications and Presentations

Document Type

Article

Publication Date

4-2020

Abstract

In 1915, Ramanujan proved asymptotic inequalities for the sum of divisors function, assuming the Riemann hypothesis (RH). We consider a strong version of Ramanujan’s theorem and define highest abundant numbers that are extreme with respect to the Ramanujan and Robin inequalities. Properties of these numbers are very different depending on whether the RH is true or false.

Publication Title

Arnold Mathematical Journal

DOI

10.1007/s40598-020-00136-w

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.