School of Medicine Publications and Presentations

Document Type

Article

Publication Date

1-2022

Abstract

Excessive expression of fear responses in anticipation of threat occurs in anxiety, but understanding of underlying pathophysiological mechanisms is limited. Animal research indicates that threat-anticipatory defensive responses are dynamically organized by threat imminence and rely on conserved circuitry. Insight from basic neuroscience research in animals on threat imminence could guide mechanistic research in humans mapping abnormal function in this circuitry to aberrant defensive responses in pathological anxiety.

50 pediatric anxiety patients and healthy-comparisons (33 females) completed an instructed threat-anticipation task whereby cues signaled delivery of painful (threat) or non-painful (safety) thermal stimulation. Temporal changes in skin-conductance indexed anxiety effects on anticipatory responding as function of threat imminence. Multivariate network analyses of resting-state functional connectivity data from a subsample were used to identify intrinsic-function correlates of anticipatory-response dynamics, within a specific, distributed network derived from translational research on defensive responding.

By considering threat imminence, analyses revealed specific anxiety effects. Importantly, pathological anxiety was associated with excessive deployment of anticipatory physiological response as threat, but not safety, outcomes became more imminent. Magnitude of increase in threat-anticipatory physiological responses corresponded with magnitude of intrinsic connectivity within a cortical-subcortical circuit. Moreover, more severe anxiety was associated with stronger associations between anticipatory physiological responding and connectivity that ventromedial prefrontal cortex showed with hippocampus and basolateral amygdala, regions implicated in animal models of anxiety.

These findings link basic and clinical research, highlighting variations in intrinsic function in conserved defensive circuitry as a potential pathophysiological mechanism in anxiety.

Comments

Copyright © 2022 Published by Elsevier Inc.

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.

Publication Title

Neurobiology of stress

DOI

10.1016/j.ynstr.2022.100428

Academic Level

faculty

Mentor/PI Department

Office of Human Genetics

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.