School of Medicine Publications and Presentations

Document Type

Article

Publication Date

9-2021

Abstract

Highlights

  • NAAG likely contributes to the total NAA differences between multiple sclerosis lesion and normal appearing brain tissue.

  • myo-Inositol was not shown to be different between chronic AQP4Ab-NMOSD brain lesions and normal appearing brain tissue.

  • An optimised MRS methodology is described, using 7T field strength and correcting for tissue T2 water relaxion differences.

  • 7-tesla MRS profiles of chronic brain lesions and normal appearing white matter are presented for MS and AQP4Ab-NMOSD.

Abstract

Magnetic Resonance Spectroscopy (MRS) allows for the non-invasive quantification of neurochemicals and has the potential to differentiate between the pathologically distinct diseases, multiple sclerosis (MS) and AQP4Ab-positive neuromyelitis optica spectrum disorder (AQP4Ab-NMOSD). In this study we characterised the metabolite profiles of brain lesions in 11 MS and 4 AQP4Ab-NMOSD patients using an optimised MRS methodology at ultra-high field strength (7T) incorporating correction for T2 water relaxation differences between lesioned and normal tissue.

MS metabolite results were in keeping with the existing literature: total N-acetylaspartate (NAA) was lower in lesions compared to normal appearing brain white matter (NAWM) with reciprocal findings for myo-Inositol. An unexpected subtlety revealed by our technique was that total NAA differences were likely driven by NAA-glutamate (NAAG), a ubiquitous CNS molecule with functions quite distinct from NAA though commonly quantified together with NAA in MRS studies as total NAA. Surprisingly, AQP4Ab-NMOSD showed no significant differences for total NAA, NAA, NAAG or myo-Inositol between lesion and NAWM sites, nor were there any differences between MS and AQP4Ab-NMOSD for a priori hypotheses. Post-hoc testing revealed a significant correlation between NAWM Ins:NAA and disability (as measured by EDSS) for disease groups combined, driven by the AP4Ab-NMOSD group.

Utilising an optimised MRS methodology, our study highlights some under-explored subtleties in MRS profiles, such as the absence of myo-Inositol concentration differences in AQP4Ab-NMOSD brain lesions versus NAWM and the potential influence of NAAG differences between lesions and normal appearing white matter in MS.

Comments

Under a Creative Commons license

Publication Title

NeuroImage

DOI

10.1016/j.neuroimage.2021.118225

Academic Level

faculty

Mentor/PI Department

Office of Human Genetics

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.