School of Medicine Publications and Presentations

Document Type

Article

Publication Date

8-30-2014

Abstract

Cell cycle is maintained almost all the times and is controlled by various regulatory proteins and their complexes (Cdk+Cyclin) in different phases of interphase (G1, S and G2) and mitosis of cell cycle. A number of mechanisms have been proposed for the initiation and progression of carcinogenesis by abruption in cell cycle process. One of the important features of cancer/carcinogenesis is functional loss of these cell cycle regulatory proteins particularly in CDKs and cyclins. We hypothesize that there is a direct involvement of these cell cycle regulatory proteins not only at the genetic level but also proteins level, during the initiation of carcinogenesis. Therefore, it becomes significant to determine inconsistency in the functioning of regulatory proteins due to interaction with carcinogen 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Hence, we investigated the interaction efficiency of NNK, against cell cycle regulatory proteins. We found a different value of ΔG (free energy of binding) among the studied proteins ranging between -3.29 to -7.25 kcal/mol was observed. To validate the results, we considered Human Oxy-Hemoglobin at 1.25 Å Resolution, [PDB_ID:1HHO] as a +ve control, (binding energy -6.06 kcal/mol). Finally, the CDK8 (PDB_ID:3RGF) and CDK2 (PDB_ID:3DDP) regulatory proteins showing significantly strong molecular interaction with NNK -7.25 kcal/mol, -6.19 kcal/mol respectively were analyzed in details. In this study we predicted that CDK8 protein fails to form functional complex with its complementary partner cyclin C in presence of NNK. Consequently, inconsistency of functioning in regulatory proteins might lead to the abruption in cell cycle progression; contribute to the loss of cell cycle control and subsequently increasing the possibility of carcinogenesis.

Comments

© 2014 Biomedical Informatics

Creative Commons License

Creative Commons Attribution-NonCommercial 4.0 International License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Publication Title

Bioinformation

DOI

10.6026/97320630010526

Academic Level

faculty

Mentor/PI Department

Immunology and Microbiology

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.