Document Type

Article

Publication Date

1-2023

Abstract

Machine learning and data mining coupled with molecular modeling have become powerful tools for materials discovery. Metal–organic frameworks (MOFs) are a rich area for this due to their modular construction and numerous applications. Here, we make data from several previous large-scale studies in MOFs and zeolites from our groups (and new data for N2 and Ar adsorption in MOFs) easily accessible in one place. The database includes over three million simulated adsorption data points for H2, CH4, CO2, Xe, Kr, Ar, and N2 in over 160 000 MOFs and 286 zeolites, textural properties like pore sizes and surface areas, and the structure file for each material. We include metadata about the Monte Carlo simulations to enable reproducibility. The database is searchable by MOF properties, and the data are stored in a standardized JavaScript Object Notation format that is interoperable with the NIST adsorption database. We also identify several MOFs that meet high performance targets for multiple applications, such as high storage capacity for both hydrogen and methane or high CO2 capacity plus good Xe/Kr selectivity. By providing this data publicly, we hope to facilitate machine learning studies on these materials, leading to new insights on adsorption in MOFs and zeolites.

Comments

Copyright © 2023 American Chemical Society    

Publication Title

Journal of Chemical & Engineering Data

DOI

10.1021/acs.jced.2c00583

Included in

Chemistry Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.